

TSE February 1st, 2017

Applied Econometrics for Development: Instrumental Variables I

Ana GAZMURI

Paul SEABRIGHT

Motivation

Consider a single equation linear model

 $y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$

- Key conditions for OLS estimation of $\beta's$:
 - E(u) = 0
 - $Cov(x_j, u) = 0, j = 1, 2, ..., k$
- What if $Cov(x_k, u) \neq 0$?
 - If we estimate this model by OLS, will we get a consistent estimate of β_k ?
- Endogeneity usually arises for 3 reasons:
 - Omitted Variables
 - Measurement Error
 - Simultaneity

Omitted Variables

 Observed association between y and the x_k is likely to be misleading because it partially reflects omitted factors related to both variables

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \underbrace{q + w}_{u}$$

- If q is unobserved and correlated with at least one x, the estimate of β's will be biased
- Can you think of examples?
 - Self-selection: if agents are choosing x_k , this decision might depend in unobservable factors

Omitted Variables

Example: Wage Equation with Unobserved Ability

 $log(wage) = \beta_0 + \beta_1 exper + \beta_2 exper^2 + \beta_3 educ + \gamma ability + u$

E(u | exper, educ, ability) = 0

- Data on ability is typically unobserved
- The parameter on interest here is β_3
- If *ability* and *educ* are correlated, then β_3 is not identified
- If $abil = \delta_0 + \delta_1 educ + r$, with r uncorrelated with *exper*, then $\widehat{\beta_3} = \beta_3 + \gamma \delta_1$

Measurement Error

We want to measure the effect of x^{*}_k but we observe only an imperfect measure x_k

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k^* + u$$

• x_k^* and x_k are uncorrelated with u

$$e_{K} = x_{k} - x_{k}^{*}$$
 and $E(e_{k}) = 0$

- e_k is uncorrelated with x_j , j = 1, ..., k 1 (usual assumption)
- Two possible assumptions:
 - e_k is uncorrelated with the observed measure $Cov(x_k, e_k) = 0$ and e_k correlated with unobserved variable x_k^*
 - e_k is uncorrelated with the unobserved variable $Cov(x_k^*, e_k) = 0$ (Classical errors-in-variables assumption)

• e_k is uncorrelated with the unobserved variable

 $Cov(x_k^*, e_k) = 0$ $x_k = x_k^* + e_k$ $y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + (\underbrace{u + \beta_k e_k}_{v})$ $Cov(x_k, v) = E(x_k v)$ $= E((x_k^* e_k)(u + \beta_k e_k))$ $= \beta_k \sigma_{e_k}^2 \neq 0$

OLS regression will give inconsistent estimators of all β's when x_j is correlated with x_k

• For variables correlated with x_k

$$\hat{\beta} = \beta \frac{\sigma_{\chi^*}^2}{\sigma_e^2 + \sigma_{\chi^*}^2}$$

2

•
$$\frac{\sigma_{\chi^*}^2}{\sigma_e^2 + \sigma_{\chi^*}^2}$$
 is between 0 and 1

- This type of measurement error is called attenuation bias
- Measurement error shrink estimates towards zero
- What happens if the measurement error is in the dependent variable?

Simultaneity

- At least one explanatory variable is determined simultaneously along with the dependent variable
- Estimation of supply and demand
- Examples:
 - Murder rate and size of police force: size of police force is partially determined by the murder rate

Remarks Regarding Endogeneity

- The distinctions among the 3 forms of endogeneity are not always sharp
- One model can have more than one source of endogeneity
- Example:
 - Effect of alcohol consumption on worker productivity (measure by wages)
 - We would worry that:
 - Alcohol usage is correlated with unobserved factors that also affect wage (family background)
 - Alcohol demand generally depends on income
 - Alcohol usage may be imprecisely measured

Instrumental Variables

- Instrumental variables provide a general solution to the problem of an endogenous explanatory variable
- We need an observable variable Z, not in the model, that explains variation in the endogenous X
- This instrument Z cannot determine Y in any way except through its effect on X

Intuition

Back to the linear model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

- Think of x_k as having 'good' and 'bad' variation
 - Good variation is not correlated with u
 - Bad variation is correlated with u
- A good IV is a variable that explains variation in x_k but doesn't explain y
 - i.e. It only explains the 'good' variation in x_k
- We can use the IV to extract the 'good' variation and replace x_k with only that component

Required Assumptions

- An IV must satisfy two conditions:
 - Relevance
 - Exclusion
- Which is harder to satisfy? Can we test them?
- Let's start with the simplest case: one problematic regressor and one instrument

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

• We have an instrument z for the problematic regressor x_k

Relevance Condition

• In the following model:

$$x_k = \alpha_0 + \alpha_1 x_1 + \dots + \alpha_{k-1} x_{k-1} + \gamma z + \nu$$

- z satisfies the relevance condition if $\gamma \neq 0$
- Easy to test, just run the regression of x_k on all the other x's and the instrument z
- This is the first stage of the IV estimation
- Important: you need to include all the other regressors in the equation
 - i.e. *z* is relevant to explaining the problematic regressor after partialling out the effect of all the other regressors in the original model

Exclusion Condition

• In the original model:

 $y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$

- *z* satisfies the exclusion restriction if Cov(z, u) = 0
- z has no explanatory power with respect to y, only through its effect on x_k
- This condition cannot be tested because u is unobservable
- You must find a convincing economic argument to why the exclusion restriction is not violated

Suppose you want to estimate job training effect on worker's productivity

- x_k : job training hours per worker
- y: measure of average worker productivity

There exists a government program randomly assigning grants for job training to firms

- Natural possible instruments:
 - A binary variable indicating whether a firm received a job training grant
 - The actual amount of the grant per worker, if the amounts varies by firm

Implementation

- You have a good IV, now what?
- Two steps:
 - First stage: regress x_k on other x's and z
 - Second stage: take predicted \hat{x}_k from the first stage and use it in the original model instead of x_k
 - This is why we call IV estimations two stage least squares (2SLS)

Implementation – First Stage of 2SLS

Estimate the following

$$x_k = \alpha_0 + \alpha_1 x_1 + \dots + \alpha_{k-1} x_{k-1} + \gamma z + \nu$$

• Calculate predicted values \hat{x}_k

 $\hat{x}_k = \hat{\alpha}_0 + \hat{\alpha}_1 x_1 + \dots + \hat{\alpha}_{k-1} x_{k-1} + \hat{y}z$

- Always report your first stage results and R²
 - It's a direct test of relevance condition
 - It helps determining whether there might be a weak IV problem

Implementation – Second Stage of 2SLS

Use predicted values to estimate:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k \hat{x}_k + u$$

Predicted values replace problematic regressor

- 2SLS estimation yields consistent estimates of all $\beta's$ when relevance and exclusion conditions are satisfied
- If you do the estimation step by step <u>standard errors</u> from the second stage <u>will be wrong</u> (Use a software package to do 2SLS, don't do it on your own)
 - The second stage uses estimated values that have their own estimation error. This error needs to be taken into account when calculating standard errors.
 - Careful with models with quadratic terms (do not use \hat{x}_k and \hat{x}_k^2)

Implementation – Second Stage of 2SLS

- What would you do if you have quadratic terms for the problematic regressor?
- Why can't we use just the other x's in the first stage? Why do we need z?

Consistent, but Biased

- IV is a consistent, but biased estimator
 - For any finite number of observations N, the IV estimates are biased towards the OLS estimate
 - As N approaches infinity, the IV estimates converge to the true coefficients
- This feature of IV leads to what is called the weak instrument problem

Weak Instruments Problem

- A weak instrument is an IV that doesn't explain very much of the variation in the problematic regressor
 - Small sample bias of estimator is greater when instrument is weak
 - Hahn and Hausman (2005) show that finite sample bias is $\approx \frac{J\rho(1-r^2)}{Nr^2}$

j =number of IV's ρ =correlation between x_k and u $r^2 = R^2$ from first-stage regression N = sample size More instruments may

regression / power can result in large bias even if N is large More instruments may help increase r^2 but if

Low explanatory

they are weak they can

increase bias

Weak Instruments Problem

Detecting weak instruments

- Large standard errors in IV estimates (you'll get large SE when covariance between instrument and problematic regressor is low)
- Low F statistic from first stage
 - The higher the F statistic for <u>excluded</u> instruments the better
 - From Stock, Wright, and Yogo (2002), above 10 likely OK

Multiple IVs and Overidentification Tests

- What if we have more than one problematic regressor?
 - IVs can still solve this
 - You need at least one IV for each endogenous regressor
 - Then estimate 2SLS in similar way
- We need at least one exogenous variable that does not appear in the structural equation as an instrument for each endogenous variable
- What if we have more instruments than needed?
 - H endogenous variables
 - M>H instruments
 - The model is overidentified (M-H overidentifying restrictions)

Multiple IVs and Overidentification Tests

Relevance condition

- Each first-stage must have at least one IV with non-zero coefficient
- Of the M instruments, at least H of them must be partially correlated with problematic regressors
- You can't just have one IV correlated with all the problematic regressors and the other IV's not
- Not obvious that you want more instruments
 - If you have a very good instrument, not clear you want to add some extra less-good IVs (it will increase small sample bias)
 - If your IVs satisfy the relevance conditions, you'll get more efficiency with more IVs

When model is overidentified you could 'test' the quality of the IVs

Testing Overidentifying Restrictions

- If we have more instruments than we needed to identify the model
 - We can test whether the additional instruments are valid in the sense that they are uncorrelated with *u*
- Hausman (1978) suggested comparing the 2SLS estimator using all instruments to 2SLS using a subset that just identifies the equation
 - If all the IVs are valid, then you can get consistent estimates using any subset of the IVs
 - So, compare IV estimates from different subsets. Estimates should only differ as a result of sampling error
 - The test implicitly assumes that some subset of instruments is valid (which may not be the case)
 - You need to use economic arguments to motivate that the IV satisfies the exclusion restriction

Suppose you want to estimate:

 $y = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_1 x_2 + u$

where $Cov(x_1, u) = 0$ and $Cov(x_2, u) \neq 0$

- Now both x_2 and x_1x_2 are problematic
- Suppose you can only find one IV z, is there a way to get consistent estimates?
- You can construct other instruments from the one IV
 - Use z as IV for x_2
 - Use $x_1 z$ as IV for $x_1 x_2$

Common Sources of Instruments

- Sometimes, convincing instruments arise in the context of program evaluation
 - Individuals randomly selected for a job training program
 - Students randomly assigned a school voucher
 - Actual participation is almost always voluntary and it can be endogenous
 - However, eligibility is exogenous
 - Eligibility can be used as an IV for job training
- Natural experiments are another source of instruments
 - Some feature of the context we are studying, produces exogenous variation in an otherwise endogenous variable
- Regional variation in prices or taxes
 - Local price of alcohol may induce some exogenous variation in alcohol consumption

- Angrist and Krueger (2001)
 - Earliest applications of IVs involved estimation of elasticities of demand and supply
 - Time series data on prices and quantities
 - OLS regression of quantities on prices fails to trace out either the supply or demand relationship
- P.G. Wright(1928) suggests using 'curve shifters' to address the problem
 - Demand shifter: price of substitutes
 - Supply shifter: yields per acre, weather
 - He uses 6 different instruments and then averages the 6 estimates
 - 2SLS is a more efficient way to combine multiple instruments

• IV estimation for education in a wage equation

 $log(wage) = \beta_0 + \beta_1 exper + \beta_2 exper^2 + \beta_3 educ + \gamma ability + u$

- Going back to the initial model, education is correlated with the error because of omitted ability
- Candidates for IV
 - Mother's education?
- Challenge to come up with convincing instruments
 - Angrist and Krueger (1991) propose using quarter of birth
 - Compulsory school attendance laws induce a relationship between education and quarter of birth. Some people are forced to attend school for longer than they would otherwise do

- Do they satisfy the 2 criteria?
 - For mother's education it's hard to argue that Cov(mothereduc, u) = 0
 - For quarter of birth, the concern is with relevance, but this can be tested
- Another issue: for who are we estimating the return to education?
 - Even if quarter of birth is a relevant IV
 - If returns to education are not constant across people
 - IV estimates are giving the return to education only for people induced to obtain more schooling because they were born in the first quarter of the year

Angrist and Krueger (1991)

- Most states require students to enter school in the calendar year in wich they turn six (school start age is a function of date of birth)
- A kid born in the fourth quarter enters school at 5 3/4, while those born in the fourth quarter enter school at age 6 ³/₄
- Typically, compulsory schooling laws require students to remain in school until their 16th birthday
- Therefore, students will be in different grades when they reach legal drop out rate
- This creates a natural experiment in which children are compelled to attend school for different lengths of time

Mean Log Weekly Earnings, by Quarter of Birth

College proximity as an IV for education

- Card(1995): use a dummy variable for whether a man grew up in the vicinity of a four-year college as an instrument for schooling
- Also includes controls for experience, race, indicators for south, region, and urban
- IV estimate of return to schooling: 13.2% (vs 7.5% with OLS)
- Counterintuitive result, we would expect upward bias
- Some explanations
 - Measurement error gives attenuation bias
 - Instrument is not exogenous in the wage equation

- Angrist and Lavy (1999) estimate the effects of class size on student achievement
 - They use a bureaucratic ceiling law on class size that induces sharp differences in average class size in Israel
 - OLS estimates show either no effect or positive effect of larger classes
 - IV estimates reveal a statistically significant benefit of smaller classes
- Angrist (1990) estimate the effect of military service on earnings later in life
 - They use Vietnam-era draft lottery numbers as an IV
 - The lottery numbers were randomly assigned to young men in the early 1970s were highly correlated with the probability of being drafted into the military

Interpreting Estimates with Heterogeneous Responses

- Not every observation is affected by the instrument
- The instrument operates by using only part of the variation in the explanatory variable
 - Angrist and Krueger (1991) case, the IV is most relevant for people with a high probability of leaving school as soon as possible with no effect on people going to college
 - Angrist(1990) Vietnam estimates are based only on the experience of those serving in the military because of the draft (not of volunteers)
- Instrumental variables provide an estimate for a specific group, the people manipulated by the instrument
- Extrapolation to other populations is speculative and relies on theory and common sense

TSE February 1st, 2017

Applied Econometrics for Development: Instrumental Variables I

Ana GAZMURI

Paul SEABRIGHT