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Optimal foraging theory usually assumes that certain key environmental 
parameters are known to a foraging animal, and predicts the animal's 
behaviour under this assumption. However, an animal entering a new 
environment has incomplete knowledge of these parameters. If the predic- 
tions of optimal foraging theory are to hold the animal must use a 
behavioural rule which both learns the parameters and optimally exploits 
what it has learnt. In most circumstances it is not obvious that there exists 
any simple rule which has both these properties. We consider an environ- 
ment composed of well-defined patches of food, with each patch giving a 
smooth decelerating flow of food (Charnov, 1976). We present a simple 
rule which (asymptotically) learns about and optimally exploits this 
environment. We also show the rule can be modified to cope with a changing 
environment. We discuss what is meant by optimal behaviour in an 
unknown and possibly changing environment, using the simple rule we 
have presented for illustrative purposes. 

Introduction 

Optimal foraging theory is based on the assumpt ion  that natural  selection 
will favour  the foraging strategy that maximizes the forager 's  fitness (see 
Krebs et al., 1983; Pyke et al., 1977; Pyke, 1984 for reviews). What  Krebs 
et al. (1983) call classical optimal foraging theory  assumes that fitness is 
maximized by the maximizat ion of  the net rate o f  energetic gain. There are 
theoretical reasons why this net rate is not  necessarily the appropr ia te  
currency (Caraco ,  1980; M c N a m a r a  & Hous ton ,  1982), and there is evidence 
that considerat ions  other  than net rate determine foraging decisions (e.g. 
Caraco et al., 1980; Caraco ,  1983; Caraco  & Lima, 1985). Nevertheless,  we 
will work within the classical optimal foraging framework.  The advantage  
of  doing so is that  it is easier to relate our  arguments  to previous work in 
this area. It is also worth point ing out that  (a) net rate may sometimes be 
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an appropriate currency and (b) the issues that we raise remain relevant 
whatever the currency for foraging may be. 

The first models of optimal foraging assumed that the forager "knew" 
the parameters of the environment (e.g. Charnov, 1973; Pulliam, 1974). 
Oaten (1977) pointed out that rewards could provide a forager with informa- 
tion about its environment, but the forager was assumed to have knowledge 
of  the possible environmental states. The forager is using information but 
not learning anything new about the environment as a whole. It can be 
argued that Krebs et al. (1978) were the first people to raise the issue of 
optimal learning. Great tits (Parus major) were given a series of choices 
between two feeding sites. Each site had a constant probability of giving 
the bird a food item if the bird chose it. At the start of a test, the reward 
probabilities were not known to the bird. This procedure corresponds to 
the two-armed bandit problem of decision theory. Problems such as this 
are difficult because they involve a combination of parameter estimation 
and the maximization of  payoff. The optimal policy can be found by 
Bayesian decision theory in which the animal can be thought of as forming 
estimates of  the reward probabilities (McNamara & Houston, 1980). There 
is, however, no need to assume that animals actually use such procedures. 
Simple rules can perform almost as well as a Bayesian decision maker 
(Houston et al., 1982). 

Houston et al. (1982) consider simple learning rules within a framework 
based on optimization. In contrast to this approach, Ollason (1980) sees 
his learning rule as an alternative to an optimality analysis. Furthermore, 
he argues (p. 51) that if an animal is learning then it cannot be foraging 
optimally and if it is foraging optimally it cannot be learning. Ollason 
applied his learning rule to an environment of depleting patches. His 
simulations suggest that when there are several patch types his learning rule 
approaches the optimal behaviour. We use the same paradigm to explore 
the following issues: (a) is it always possible to learn the classical optimal 
strategy, i.e. the strategy which maximizes long term reward rate? (b) What 
does it mean to forage optimally in an unknown, and possible fluctuating, 
environment? 

The Model Environment 

We consider the patchy environment first analyzed by Charnov (1973, 
1976). We assume that there are k patch types labelled El, E 2 , . . . ,  Ek. The 
proportion of patches of type Ei is ai, so that the probability that the next 
patch visited is type Ei is always a~. Patches are not revisited. On a patch 
of type E~ rewards are gained as a smooth flow: the rate after time t has 
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elapsed on a patch being ri(t) .  We assume that, for each i, ri(t) is a strictly 
decreasing function which tends to zero as t tends to oo. The travel time 
between patches, r, is a random variable with a finite expectation 
O< E ( r ) < o o .  

We assume that, on encountering this environment,  the animal does not 
know k, ai, ri or z. 

The marginal value theorem (Charnov, 1976) says that the long term rate 
is maximized if the forager leaves each patch when the rate ri(t)  drops to 
the maximum possible long-term rate. This rate will be denoted by 3,*. The 
theorem provides a rule that specifies the optimal behaviour if 3,* is known. 
We are assuming, however, that the environmental parameters,  and hence 
3'*, are not known. The forager is now faced with the problem that optimal 
behaviour (in its simplest sense) requires a knowledge of y*, but 3,* can 
only be achieved by behaving optimally. Despite this apparent  circularity, 
we show in this section that it is always possible to learn 3,* in the 
environment that we are considering. 

A general way in which behaviour can be represented is to view the state 
of the animal (or model animal) as determining behaviour. The consequen- 
ces of  behaviour  in turn modify the state and hence determine future 
behaviour (e.g. Houston et al., 1977). Within this framework, a rule can be 
said to learn about an environmental parameter  when the value of a state 
variable converges to the parameter  value in question. In the case of  
patch-use, the parameter  that we will consider is the maximum possible 
rate 3,*. We now describe a simple rule that learns the value of 3,*. 

The Learning Rule 

The animal encounters patches sequentially. Let 

t, - - t ime spent on the nth patch 

rn -- time spent travelling between the nth and n + lth patch. 

Tn = t, + rn. 

Thus Tl + .  • .+  T~ is the time between arrival at the first patch and arrival 
at the n + 1st. Let 

R,  = reward obtained on the nth patch. 

We consider a rule in which 3'* is recursively estimated. Initially constants 
Ro and To are chosen (Ro, To> 0). The ratio 3,o = R o / T o  is the initial estimate 
for ~,*. The animal leaves the first patch encountered when the reward rate 
on this patch falls to 70. On arrival at the next patch it forms a new estimate 
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'Yl for 7", and uses this to determine when to leave the second patch, and 
so on. We consider a rule which has the following detailed form. 

(a) On arrival at the n + l t h  patch ( n = 0 ,  1 , . . . )  the animal forms the 
estimate y. for y* where 

R 0 + R l + .  • .+ R. 
%,= To+ Tx+ . . .+  T, ,. (1) 

(b) The animal leaves the n + lth patch when the reward rate on this 
patch falls to 3',- 

To illustrate the properties of this learning rule, we first consider a simple 
environment in which all patches are the same. In this case it is possible 
to give a reasonably easy proof  of results which are true in the more complex 
environments that we subsequently consider. 

Learning in the Simplest Case 

Consider an environment in which there is only one patch type with 
reward rate r(t), and the travel time T is a constant. 

7,*= f(y*)/, 

/ / /  

- -  7 "  / 0  

Cumulative 
reward R(t) , - - - ~  

rz/ A /  . -  1 
/ f  ..-"~(x,) '~ 

, ' r /  .- 

i 
i 
r 

1 ' i i i 

Time on patch, t 

FIG. 1. A graphical illustration of the relationship between an estimate 3' for 7* and the 
long term reward rate f( 'y) which results from using this estimate on each patch encountered. 
The solid curve is the cumulative reward R(t)=~' o r(v)dv as a function of time t on patch. 
For any estimate 7, the rule is to leave each patch when r(t) falls to 3,. The resulting rate f ( 7 )  
is the cumulative reward R(t) divided by the total time (t + r). Three values of y are illustrated 
(3% 3'* and 72). In each case the rate is the slope of the solid straight line that joins the curve 
to the point Q. When 3' = 3'*, then f ( y )  = 7*. In the other two cases y is indicated by the slope 
of the broken line. 
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Suppose  that  the an imal  uses the same est imate 3 '>  0 for 3'* on every 
patch it encounters .  Let f (3 ' )  be the long te rm reward rate achieved by using 
this est imate.  Figure 1 illustrates the dependence  o f f ( 3 , )  on 3'. It can be 
seen that  

(a) I f  3' = 3'* then the an imal  leaves at t ime t* and achieves rate f (3 '* )  = 

3'*. 
(b) I f  3' = 3'1 where  0 <  3'1 < 3'*, the animal  leaves at t ime tl and achieves 

rate f (3 ' , )  where  3'1 <f (3 '1 )  < 3'*. 
(c) I f  3, = 3'2 where 3'2 > 3'* then the an imal  leaves at t ime t2 and achieves 

rate f(3'2) where  f(3'2) < 3'*. 
Note that  if 3' > r(0) then each patch  is left immedia te ly  and hence f (3 ' )  = 0. 
Figure 2 shows the full funct ion f when r ( t ) = e - '  and ~'= 1. In this case 
3 ,*=0.31784 and the op t imal  t ime on pa tch  is t * =  1.1462. As can be seen 
from the figure, condi t ions  (a), (b) and (c) are all satisfied in this case. 

try) 
y* . . . . . . . . . . . . . . .  / , /  

0 3  / / 

0.2 
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0'I / /  

/ 

/ i i 

0 0-I O2 
¥ 

0.5 0'.4 

FIG. 2. The relationship between an estimate y of  y* and the long term reward rate f ( y )  
which results from using this estimate on each patch encountered.  The curve gives f ( y )  when 
r ( t ) = e  - t  and r = l . 0 .  The points of  intersection of this curve with the straight line give 
solutions to the e q u a t i o n f ( y )  = 3,. Note that y = y* is the only positive solution to this equation. 

The graphica l  results, i l lustrated in Fig. 1, are true in general  and are 
es tabl ished by analyt ical  a rgumen t  in Append ix  1. We summar i se  the main  
conclusions.  

O < - f ( y ) < - y  * f o r a l l  y > O  (2) 

f ( y * )  = T* (3) 

O< y <  y*====> y < f ( y ) .  (4) 

In par t icular  y* is the only posit ive root  o f  the equat ion  f ( y )  = y: i.e. 

f ( y ) = y  for  y>O: :==>y=y *. (5) 
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We now apply these results to our learning rule. Equations (2), (3) and 
(4) show that the estimates Y, and 3',+~ satisfy the following relationships 

7, > 3/* 3 0 <  Y,+I < y,. (6) 

%, = 3'* 3 7 . + 1  = Y*. (7)  

0 <  y, < y * 3 y ,  < y,+~< y*. (8) 

These relationships are proved in Appendix 2. They imply the following 
result. 

y , ,~  T* as n--,oo. (9) 

The proof  can be divided into two parts. 

Part 1. Proof  that y, tends to a limit 
Suppose that 0 <  yo< 3'*. Then by equation (8) 

T o <  T1 < T2 < .  . . <  T*- 

Thus 3', tends to a limit as n tends to infinity. 
Suppose To = y*. Then, by equation (7), y, = 3'* for all n. 
Finally, suppose that To > y*. Then, by equation (6), one of  the following 

two possibilities must occur 

(a)  Y o -  Y, - 3 ' 2 - . - .  -> 3'*, or 
(b) 0 < YN < 3'* for some N. 

I f  (a) occurs then 3', must tend to a limit as n tends to infinity. I f  (b) occurs 
then by equation (8) 

3'N < 3'N+I < 3'N+2 < .  • • < 3'*, 

and again we have convergence. 
In conclusion y, tends to a limit as n tends to infinity. We denote this 

limit by ~. It can be seen from the above proof  that ~ > 0. 

Part 2. Proof  that "~ = 3'* 
Since 3,, tends to a limit so do the rewards R,  and times T,. We denote 

these limits by R and T respectively. By equation (1) 3', must tend to R~ T, 
so that R = ~T. 

It can be shown that f (3 ' )  is a continuous function of 3' for 3 '>  0. Thus 
f(3",) tends to f(-~) as n tends to infinity. But R,+, = f ( y , ) T , + ~ ,  since f (3 ' , )  
is the average rate the animal would obtain by using the estimate y, on 
each patch. Thus taking the limit as n tends to infinity we find that R =f(3~) T. 
Compar ing this with the equation R = 33T we conclude that f ( ~ )  = ~. Thus 
from condition (5) it can be seen that ~ = 3'*. 
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FIG. 3. The  convergence  of  y ,  to 7"  when  r ( t ) = e - '  and  r =  1"0. In this case  y* =0 .31784 .  
In (a) y o = 0 - 6 >  7".  The  tr iangles  correspond  to T o = 2 ,  R o =  1.2, the squares  to 7"o=0.75, 
R o = 0.45 and  the circles  to T o = 0.01, R o = 0.006. In (b) I'o = 0.15 < y*. The  squares  c o r r e s p o n d  
to To=2 .5 ,  R o = 0 . 3 7 5 ,  the tr iangles  to To=0 .8 ,  R o = 0 . 1 2  and  the circles to To=0 .01 ,  R o =  
0.0015. 

The convergence o f  y,  to y* is illustrated in Fig. 3, from which the effect 
o f  variations in the choice of  Ro and To can be seen. In Fig. 3(a) Yo is 
greater than 7" and in Fig. 3(b) 7o is less than 7". When R o = 0 . 0 0 6 ,  
To = 0.01, it can be seen that 7o > 7" and y, < y*. In all the other examples 
illustrated, convergence is monotone .  

Learning in the General Case 

When there is more than one patch type present (or when ~- varies) T, 
and R,  are random variables and the sequence Yo, Y~, Y2, . . .  is a stochastic 
process. We illustrate this with three stochastic environments which are all 
simple modifications of  the environment in which each patch has reward 
rate r ( t )  = e - ' .  

In each environment there are two patch types E~ and E2, with parameters 
k~ and k2 respectively. On a patch with parameter k~ ( i =  1, 2) we have 
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ri(t) = ki exp ( - t ) .  The two types are present  in equal p ropor t ions  so that 

a~ = c~2 = 0.5. The travel t ime ~- is again equal  to 1. The three env i ronment s  
are described in Table  1 together  with the opt imal  stay times on each patch 
type. The table also gives the result ing long term average rate on each patch 
type (rewards on patch divided by time on patch plus ~-). For  each environ-  
ment  parameters  have been  chosen so that the m a x i m u m  long term average 
rate, 3'*, is again equal to 0.31784. 

TABLE 1 

Environment Patch type k t* Rate 

A E I 0.8 0.9231 0.2507 
E 2 1.1823 1.3137 0.3736 

B E I 0.6 0-6354 0.1725 
E 2 1.3277 1.4297 0-4156 

C E 1 0.4 0.2299 0.0668 
E 2 1.4203 1.4971 0.4415 

To il lustrate the stochastic na ture  of the process, consider  Env i r onme n t  
C and  suppose  that the initial  constants  are 

To = 1 and  Ro = 0 . 3 1 7 8 4 ~  3'*, 

so that 3'0 = 3'*. The possible values of 3'1, 72 and  3'3 are given in Fig. 4. As 
can be seen there are two possible values of 3'1, four possible values of 72, 
and  eight possible values of 73. Each time that a good patch (type E2) is 

encounte red ,  3', increases;  each time that a poor  patch is encounte red ,  3'n 
decreases. Because a~ = c~ 2 = 0.5, the eight possible values of 3'3 are equal ly  
likely. 

¥ =o-4311 

Y2 = 0 4 2 3 5  ~ )3=0 .3606  

= 0 4061 .,..,...~ ~ 7"3 =0 .3603  

Yo =0.3178 ¥3 =° 262° 
~ . ~  Y3 =03518 

~0 ~ 0 9 7 ~  
TI = 0 .1794~  - j ' ' ' ~  ) 3 = 0 2 6 4 1  

--..., 
T2 = 0 1559 ......----'-~ ¥3 = 0 2 6 0 1  

)3=0"1448 

FIG. 4. Possible values of Yl, 72 and ~/s for Environment C when T O = 1 and Ro = 0.31784 ~- 
')1" 
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It is important to note that the order in which patch types are visited 
influences y,. For example the sequence E2, E2, E1 results in 3'3 = 0.3606, 
whereas the sequence El, E2, E2 results in 3'3 = 0.3518. The reason for this 
effect is that the patch types that have been visited determine the current 
estimate of  3', which in turn determines the time spent on the current patch. 
Thus the time spent on a patch type and the rewards obtained from it are 
not fixed, but depend on previous experience. As a result, even when Yo = 3'* 
it is not clear that y, tends to ~/* as n tends to infinity. The difficulty is that 
even though the proportion of patches of type i that are visited tends to a~ 
as the number of patches visited tends to infinity, the order in which patches 
are visited is also relevant. It is therefore not possible to extend the proof 
given above by simply averaging. By approaching the problem in a different 
way, it is possible however to prove that equation (9) holds with probability 
one. This result follows from an application of a general result on Markov 
renewal processes given in McNamara (1985). Strictly speaking the general 
theory presented there only applies to the case where each patch visited 
eventually runs out of  food, so that r~(t)=0 for t sufficiently large. The 
theory can however be extended in various ways to cover other cases. 

Ollason (1980) considers a rule which has some similarities to the rule 
we consider. One major difference is that the past is discounted by his rule. 
The degree of discounting is measured by a parameter k which tends to 
infinity as memory stretches further back into the past. He considers the 
special case of rewards of the form r ( t ) =  ae -b' in detail. In this case his 
rule has the property that, when all patch are identical, the time spent on 
patch tends to a limit, to as time in the environment tends to infinity. As k 
tends to infinity tc tends to the optimal time on patch. When patches differ 
his simulations suggest that behaviour tends towards optimal as time in the 
environment and k tend to infinity. 

This suggests that setting k = co might give a rule which, like our rule, is 
asymptotically optimal (see below). As can be seen from his equation (1) 
this is not the case. Setting k = co here leads to a rule under which a patch 
is never left until r ( t ) =  0. Such a rule would perform very badly. 

Rates of Convergence 

Clearly it is advantageous to obtain accurate estimates for 3,* as quickly 
as possible. To measure how quickly the estimate y. tends to y* we introduce 
the error 0-2 defined by 

o-~, = E{(~,,,- 7*)2}; 

i.e. 0"2. is the mean square error in the estimate y. of "y*. We use 0-2. to 
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measure  es t imat ion  error because  the loss in reward rate that results from 
using the wrong 3' to determine  when to leave a patch is approx imate ly  
proport ional  to ( 3 ' -  3'.)2 for small  13'- 3,'1. A justif ication o f  this c la im is 
g iven in A p p e n d i x  3. 

If  3,0 = 3'* then 0 -2 = 0 for all n in a non-s tochast ic  environment .  Thus in 
order to invest igate  the effect o f  s tochast ic i ty  on 0-~,, we  set To= 1 and 
Ro = 3'*, so that 3,0 = 3,*. The resulting mean  square error in the three 
env ironments  A, B and C is illustrated in Fig. 5, which  shows  that the mean 
square error increases  with increasing variability in the environment .  

~20 
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\ \  

¢~ ~ o ~  "-.o 

t i 

0 5 10 2'0 3~0 
Number of porches visited 

FIG. 5. The effect of  environmental variability on the error with which 7* is estimated. The 
root mean square error o-,, is plotted as a percentage of  "),* for (from top to bottom) the three 
environments C, B and A as a function of  the number, n, of  patches visited. The environments 
are described in Table 1, which shows that C is the most variable and A the least variable. 
The figure shows that the error increases with increasing environmental variability. 

To illustrate the addit ional  effect o f  a variable travel t ime,  s o m e  values 
o f  the percentage root mean  square error under variable ~- are given in 
Table 2. The values c o m e  from Environment  B, modif ied  so that ~- has mean  
1 but a uniform distribution over an interval centred on 1. The table shows  
that the mean  square error increases  with increasing variability in r. 

TABLE 2 

Learning 3,* when the travel time is variable (Environment B) 

% rmserror  n = 2  n = 4  n = 8  n = 2 0  n = 5 0  

~'= 1 21.2 16.5 12.3 8.1 5.2 
r - -  U(½, ~) 22.7 17-8 13-2 8.6 5.5 
~-~ U(O, 2) 27.6 21.5 15.8 10.2 6.5 
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These results illustrate a phenomenon which we might expect to hold 
generally for any rule which estimates 9'*: the more variability in the 
environment, the slower an estimate tends to converge to 9'*. 

It is clear from Fig. 3 that the rate at which 9'~ tends to 9'* also depends 
on Ro and To. Mean square error is reduced if the initial estimate 9'o is 
close to 9'*. However, it is not always possible to ensure this since 9'* is a 
priori unknown. For given 9'o = Ro/To Fig. 3 illustrates that o-2 also depends 
on the magnitudes of  Ro and To. When all patches are the same small Ro 
and To ensure rapid convergence. (Although, as Fig. 3 illustrates, if 7o > 9'* 
and Ro and To are very small 9'! may overshoot Y*.) However, if patches 
differ, this is no longer true. As Fig. 4 illustrates random fluctuations can 
change the estimate of  9'* dramatically. The smaller the values of  Ro and 
To the more sensitive a rule is to these fluctuations. As a consequence if 
one is fairly sure that the initial estimate 9'0 is close to 9'* it is best to choose 
Ro and To large so that estimates will be insensitive to short term fluctuations. 

It can thus be seen that the initial estimates Ro and To together define a 
sort of  prior mean and variance for the unknown parameter  y*. The ratio 
9'0 = Ro/To acts as the prior mean, while the magnitude of the parameters  
Ro and To play the role of  prior variance, with variance decreasing with 
increasing R0 and To. 

Optimal Learning 

The discussion of convergence has led us to the central issue of optimality 
in the context of learning. As we have already mentioned, Ollason (1980) 
argues that learning is incompatible with optimal foraging, and vice versa. 
While it is clearly true that an animal (or rule) that has to learn about the 
environment cannot always maximize reward rate, it does not seem reason- 
able to conclude that a rule for learning cannot be optimal in some broader  
sense. One such sense is that of  asymptotic optimality, which has already 
been described in the context of  learning by Houston et al. (1982). A rule 
is asymptotically optimal if its performance tends to the optimal perform- 
ance as experience tends to infinity. In other words, the rule always learns 
the optimal  policy in the long run. This criterion is more or less the one 
used by Harley (1981). The results described above show that there exists 
an asymptotically optimal rule for a broad class of  patchy environments. 

It can be objected, however, that asymptotic optimality is not necessarily 
a very good criterion, in that it assumes that performance will be assessed 
over an unlimited period. Rules that are asymptotically optimal may perform 
badly over limited periods (Houston et al., 1982). The appropriate  currency 
depends on the details of  an animal's environment.  If  the animal has a 
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fixed period in a given environment,  then the total expected reward may 
be the best criterion. I f  the animal has a constant probabili ty of  being forced 
to stop foraging, then some form of discounted rewards should be the 
criterion (see Houston et al., 1982). 

Establishing the optimality criterion does not, however, suffice to enable 
the optimal learning rule to be specified. This can be seen from our discussion 
of  how our rule depends on Ro and To, where it was seen that the best 
choice of  these parameters  depends on the type of environment likely to 
be encountered. In general one needs to specify the range of environments 
which are possible, and to specify the probabili ty of  encountering an 
environment of  any given type. In other words one needs to specify some 
prior distribution on the set of  possible environments.  

Finally, one needs to specify what information a rule is allowed to use. 

Coping with a Changing Environment 

So far, we have confined our attention to a constant, but possibly stochas- 
tic, environment.  The principle advantage of learning is, however, the fact 
that it enables an animal to respond to changes in the environment.  Many 
people have constructed learning rules that are based on some exponentially 
weighted average of past experience (Harley, 1981; Killeen, 1982; Lester, 
1984; Ollason, 1980; see Kacelnik et al., in press, for a review). The basic 
idea of exponential  weighting is that more importance is given to the recent 
as opposed to the remote past. We now consider a modified rule that involves 
exponential  weighting, and investigate how well this rule performs in both 
changing and non-changing environments. This illustrates the conflicting 
pressures on a learning rule and leads us to a consideration of what it means 
to be optimal in a changing invironment. 

Following the notation used above, R,  is the reward obtained on the nth 
patch and 7", is the time on the nth patch plus the travel time to the next 
patch. Like our previous rule, the rule forms an estimate of  3'* using previous 
rewards and times and leaves a patch when the rate on the patch falls to 
the current estimate of  3,. The previous rule formed the following estimate 
of  "y, 

R. + . . .  + Ro 
3',,_-- 

T , + . . . +  To" 

In this estimate, all previous rewards and times have equal weight. The 
rule that we now consider is based on the following estimate of  3', 

R.  + e - ~ R , _ l  + e - ~ + ~ - 0 R , _ 2  + . . .  + e- '~(~++T,~Ro 
3 ' . -  Tn + e -aT" T,_ 1 + e - ~  L + T°-') T,-2 +.  •. + e-~¢ L,+'+ r,) To" 
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In this equation, a is the exponential weighting factor (c~ > 0) (the previous 
rule corresponds to ~ = 0). A simple way to express this rule is to call the 
numerator Y. and the denominator X.. It can then be seen that 3;. = Y . / X .  
where 

y , ,=R,+e-~T, ,y ,_~ 

and 

X,  = T , + e - " L X , _ ~ .  

To investigate the properties of this rule we first consider an unchanging 
environment in which all patches are the same and the travel time is constant. 
In such an environment it can again be shown that 3;,, tends to 3;* as n 
tends to infinity. The proof is a simple modification of the proof given for 
the original rule. As before one can establish equations (6), (7) and (8) and 
use these equations to show that 3;, must converge to some limit, and one 
can again use equation (5) to show that this limit must be 3;*. Thus the 
modified rule is asymptotically optimal for any value of the exponential 
weighting a. Th~ rule proposed by Ollason (1980) does not have this property 
for any value of his weighting factor k 

Under this rule the quantities Y, and X, tend to equilibrium values as 
the number of patches visited tends to infinity. The equilibrium values 
depend on a and the environment. The rate at which equilibrium is 
approached depends on a and increases with increasing a. 

The point of using a rule based on some weighting or discounting of past 
experience is that a rapid response to change is possible. To illustrate the 
effect of the weighting factor.a, we have calculated the response of the rule 
to a change in patch quality. We assume that the rule has reached equilibrium 
in an environment in which the rate on all patches is r(t) = k exp ( - t )  and 
k =  1. The value of k then changes to a new value which is the same for 
all patches. Figure 6 shows how the estimate of 3;* depends on a and on 
the number of patches that have been visited. When a is large the previous 
environment is forgotten quickly and convergence to the new 3;* is rapid. 

Figure 6 suggests that a large value of a is desirable, but this is not true 
if the environment is stochastic. When there is no exponential weighting, 
all patches are represented equally in the estimate of 3;*. The introduction 
of a weighting factor means that recent patches predominate. No matter 
how many patches have been visited the estimate 3;, is subject to the influence 
of the patches which happen to have been visited recently. Consequently, 
when the environment is stochastic 3;, will not tend to a limit, but will 
forever fluctuate. One can use the mean square error to measure the size 
of these fluctuations. When there is no weighting (a = 0) the mean square 
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FIG. 6. Response of the rule to a change in the environment. Initially r(t) =e-'  for all 
patches and the estimate of 3,* is its true value y*=0.3|784. After n=0 the environment 
changes so that r ( t )  = k e - '  for all patches. In (a) k=0 .6  so that the new y~ is 0.1907. In (b) 
k =  1.3 so that 3,*=0.4132. In each case squares refer to a =0-25 ( t ,=4) ,  triangles to ~ = 
0 . 0 6 6 6 6  ( t~  = 1 6 )  a n d  c i r c l e s  t o  a = 0 . 0 2 5  ( t ,  = 4 0 ) .  ~" = 1 t h r o u g h o u t .  

error t e n d s  to zero ,  but  w h e n  there is a n o n - z e r o  w e i g h t i n g  factor  a the  

m e a n  s q u a r e  error t ends  to a p o s i t i v e  va lue .  T h e  d e p e n d e n c e  o f  th is  v a l u e  
on  the  r e s p o n s e  t i m e  tr = 1 / a  for e n v i r o n m e n t s  A,  B, a n d  C is s h o w n  in 

Fig.  7. T h e  shorter  the  v a l u e  o f  tr, the  m o r e  w e i g h t  is put  on  the  very  recent  
past ,  a n d  h e n c e  the  m o r e  s e n s i t i v e  3', is to e n v i r o n m e n t a l  s tochas t i c i ty .  T h u s  
m e a n  square  error is large for s m a l l  tr a n d  d e c r e a s e s  as tr increases .  

It can  be  s e e n  f r o m  this  d i s c u s s i o n  that  there  are c o n f l i c t i n g  pressures  
o n  the  c h o i c e  o f  a. T h e  n e e d  to r e s p o n d  to a c h a n g e  in the  e n v i r o n m e n t  
favours  a s m a l l  v a l u e  o f  c~, but  s u c h  a v a l u e  m a y  result  in i n a p p r o p r i a t e  
r e s p o n s e s  to runs  o f  g o o d  or b a d  luck.  

T o  d e t e r m i n e  the  bes t  v a l u e  o f  a ,  w e  n e e d  to say  w h a t  it m e a n s  for  a 

l earn ing  rule  to be  o p t i m a l  in a c h a n g i n g  e n v i r o n m e n t .  W e  h a v e  a l ready  
sa id  that in a s t o c h a s t i c  e n v i r o n m e n t  it is n e c e s s a r y  to s p e c i f y  a pr ior  
d i s t r ib u t ion  o n  e n v i r o n m e n t s  i.e. to s p e c i f y  the  p o s s i b l e  e n v i r o n m e n t s  a n d  

their  p r o b a b i l i t y  o f  o c c u r r e n c e .  In a c h a n g i n g  e n v i r o n m e n t  th i s  i n f o r m a t i o n  
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FiG. 7. The long term equil ibrium value o f  the % rms error plotted as a function o f  b = I/a 
for environments A, B and C. 

is still required but in addition we must specify how frequently changes 
occur and the probability distribution of environments after a change. If 
the state of  the environment is regarded as a vector-valued stochastic process, 
then the above requirements amount to having knowledge of the transition 
probabilities that govern the evolution of the stochastic process. 

For the rule that we have been considering the best value of a depends 
on the probability that the environment will change. If a change is likely 
then a large a, and hence small response time, are likely to be advantageous. 
This advantage is offset, however, by the stochasticity of the environment. 
The interaction between these conflicting demands is quite complex. 

Discussion 

Optimal foraging theory usually assumes that certain environmental para- 
meters are known. Ollason (1980) stressed that animals have to learn about 
their environment and discussed this problem in the context of patch use. 
The marginal value theorem (Charnov, 1976) specifies optimal behaviour 
in terms of the maximum possible rate 7", but as Ollason pointed out, if 
a predator does not know 7", then it can only experience 7" by behaving 
optimally. Thus it is not clear that an animal can learn to behave optimally. 
We have presented a simple rule and shown that the rule learns 7* under 
a wide range of  conditions. 

Ollason (1980) argues that because a learning animal does not spend all 
its time foraging at the maximum rate 7" it is not foraging optimally. While 
this is obviously true in terms of classical foraging theory, it is inappropriate 
to use such an optimality criterion when the environmental parameters are 
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unknown.  We argue in this paper that the optimality criterion must take 
account of  the fact that an animal has to learn. It is still possible to ask if 
an animal is foraging as well as possible, given that it starts without complete 
knowledge o f  its environment. We have described the ingredients that are 
needed to formulate an optimality criterion for behaviour in a constant 
but unknown environment and in a changing environment.  Although this 
involves more ingredients than are required in classical foraging theory, 
it is still possible for optimal behaviour to be well-defined. 

Our simulations suggest that it may be difficult to learn when the environ- 
ment is highly variable. The basic model  involves only variability in patch 
types; even then learning is slow. When variability of  travel times is added, 
learning is slower. The foraging environment of  most animals is presumably 
more variable than any o f  the cases that we have considered. Consequently,  
it may be very difficult for animals to learn enough about their environments 
to forage optimally in the terms of  classical foraging models.  

A.I.H. was supported by a Science and Engineering Research Council grant to 
J. M. McNamara and J. R. Krebs. 
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APPENDIX 1 

Properties of f(y) 

Let y >  0. Since r(t) is monotonic decreasing and tends to zero as t tends 
to infinity there exists t--- t (y)  such that 

Note that, since r(t) is 
function of y. 

We now define R by 

Io R ( t ) =  r(v) dv t->O, 

and define 7" by 

Finally, we define 

r ( t ) > y  0--< t <  t (y)  (AI.1) 

r(t(y))<_ y. (A1.2) 

a decreasing function of t, t(y) is a decreasing 

(A1.3) 

R(t(y))  
f ( y )  = - -  y > 0 .  (A1.5) 

t(~,)+ ~" 

We show that f satisfies equations (2), (3) and (4). 
Equation (2) holds by equations (AI.4) and (A1.5), and equation (3) is 

just a restatement of the Marginal Value Theorem. Thus it only remains to 
establish equation (4). Let y satisfy 0 < y < y*. Then, since t (y)  is monotone 
decreasing, we have t(y) > - t(y*). We thus have 

fO("/) I tIT) R ( t ( y ) ) =  r(v) d v = R ( t ( y * ) ) +  r(v) dv. (A1.6) 
Jr(y*) 

Now by equation (A1.5) 

R( t( y*) ) = ( t( y*) + T)f( y*). 

Thus by equation (3) and the assumption y <  y* we have 

R(t(y*))  > 7( t (y*)  + 7"). (A1.7) 

R(t)  
y* = sup (A1.4) 

,~o ( t+  7)" 



248 J . M .  M c N A M A R A  A N D  A .  I .  H O U S T O N  

Also by equation (AI.1) 

r(v) dr>- vdv=v(t(V)-t(V*)). (A1.8) 
d t  (),*) dt(y*) 

Thus from equations (A1.6), (A1.7) and (A1.8) we have 

g(t(V)) > V(t(v) + z). 

Equation (4) then follows from the definitions o f f ( v )  (equation A1.5). 

APPENDIX 2 

Relationship of ~/n+~ to V. 

We prove equations (6), (7) and (8). 
The learning rule prescribes that the n + lth patch should be left when 

the reward rate falls to V,. Thus in the terminology of Appendix 1 

and 

Thus by equation (A1.5) 

R.+l=R(t(Vn)) 

T.+, = 7"+ t(v.). 

R.+, = f ( v . )  T.+,. (A2.1) 

For convenience we set 

X ~ = ~  Ti and Y.=~ Ri 
i = 0  i=0  

so that 

Y~ 
Y" X. (A2.2) 

We also have 

and hence 

V n + l  
Y. + R.+I 

Xn + T.+~' 

T.X. + f ( v . )  T.+, 
V n + l  - -  

Xn + T.+l 

by equations (A2.1) and (A2.2). 

(A2.3) 
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Suppose  that  3 ' .>3 '* .  Then  f (3 , . ) -<3 ,*(<3 , . )  by equat ion  (2), and 
hence 3, .X. +f(3 , . )7" .+,  < 3 , . (Xn+ Tn+l). Equat ions  (A2.3) then shows 
that 3,.+~<3"n- We also have 3,n+~>0 since X .  and 3'. are positive. 
This proves  equat ion  (6). 

Suppose  3'. = 3'*. The  f ( % )  = 3'* by equat ion  (3) and hence 3,.+~ = 3'* by 
equat ion (A2.3). This proves  equat ion (7). 

Finally, suppose  0 < 3'. < 3'*. Then f ( % )  > 3'. by equa t ion  (4), and 3'* -> 
f ( % )  by equa t ion  (2). Thus  

3,. (X .  + T . + , ) <  3,.X. + f ( 3 , . ) T . + ,  < 3,*(X. + T.+,).  

Equat ion (8) then follows f rom this equa t ion  and  equat ion  (A2.3). 

APPENDIX 3 

Mean Square Error 

The funct ion f(3,)  has a m a x i m u m  at 3' = 3'*. Thus 

f ' (3 ,*)  = 0 (A3.1) 

and 

k -= - ½if(3,*) -> 0. (A3.2) 

Performing a Tay lo r  series expans ion  o f f ( 3 , )  abou t  3' = 3'* we obta in  

f (3 , )  = f(3,*)  + (3' - 3,*)f'(3,*) +½(3, - 3,*)2ff(3,*) + 0((3, - 3'*)3) • 

Thus by equat ions  (A3.1) and (A3.2) 

f(3,*)  - f ( 3 ' )  = k( 3' - ,/,)2 + 0(( 3, - 3'*)3) • 

This equa t ion  shows that  the loss in long term reward rate which results 
f rom using the est imate 3' ra ther  than 3"* is p ropor t iona l  to ( 3 ' - 3 ' * )  2 for 
small 13' - 3'*[- 


